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Abstract

We present a new diagnostic for open-shell coupled-cluster theory, readily computed from the single substitution

amplitudes in the CCSD wavefunction. The new diagnostic, D1(ROCCSD), is designed to be comparable to the pre-

viously proposed D1�CCSD� diagnostic. Unlike other approaches, the D1 diagnostics are independent of system size

and have the same invariance properties as the energy with respect to orbital rotations. Calibration of the

D1�ROCCSD� diagnostic on 34 molecular systems indicates that for values of D1�ROCCSD� of 0.025 or below the

quality of the CCSD results are, in general, excellent, whereas values larger than 0.025 signal inadequacies in the CCSD

approach. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Coupled-cluster theory [1±3] is among the most
reliable methods for including the electron corre-
lation e�ects in molecular systems. The most e�-
cient coupled-cluster approaches are based on a
single-reference Hartree±Fock wavefunction, and
generally perform better for systems well described
by a single electronic con®guration. When used in
conjuction with basis set extrapolation techniques,
the coupled-cluster methods can provide molecu-
lar properties for small-to-medium sized molecules
to near chemical accuracy (�1 kcal/mol) [4±10].
For determining the quality of single-reference
coupled-cluster results, diagnostics that assess the

quality of the reference wavefunction are ex-
tremely valuable. Such diagnostics are particularly
important for studying large systems where im-
proving the level of theory, by complete basis set
extrapolation or higher levels of correlation, is too
computationally expensive, and the results from a
single computation have to be trusted. We have
previously proposed diagnostics for coupled-clus-
ter and second-order many-body perturbation
theory based on closed-shell reference wavefunc-
tions [11,12]. We herein propose a comparable
diagnostic for coupled-cluster methods based on
spin-restricted open-shell reference wavefunctions.

2. Theory

A diagnostic for open-shell coupled-cluster
theory should have several properties: the diag-
nostic must be easily computed so that its
computational cost is essentially insigni®cant
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compared to the cost of an energy calculation; it
should re¯ect the quality of the wavefunction 2; it
should be independent of the size of the system
(size-intensive) so that diagnostics for various
systems can be meaningfully compared; and it
should have the same invariance properties as the
energy with respect to orbital rotations. We have
previously pointed out the problems with using
diagnostics based on the Frobenius matrix norm,
like the popular T1 diagnostic [11,12]. Here we
focus on developing a singles diagnostic which has
the above mentioned properties, which represents
the spatial orbital relaxation due to the coupled-
cluster wavefunction, and which is based on the
singles amplitude matrix 2-norm [13].

In the spatial orbital basis the single substitu-
tion part of the open-shell cluster operator can be
written

T1 � taa
ia ayaaaia � tab

ib ayabaib � taa
xaayaaaxa � txb

ib ayxbaib;

�1�
where a, i, and x designate unoccupied, doubly
occupied, and singly occupied orbitals, respec-
tively. To make it clear which parts of this oper-
ator preserve spin symmetry and which parts
break it, we will rewrite T1 in terms of spin-sym-
metry preserving unitary group generators, Epq �
aypaaqa � aypbaqb, and the spin-symmetry breaking
operators, Apq � aypaaqa ÿ aypbaqb

T1 � ra
i Eai � ua

i Aai � ra
xEax � ua

xAax � rx
i Exi � ux

i Axi;

�2�
where

ra
i � taa

ia

�
� tab

ib

�
=2;

ua
i � taa

ia

�
ÿ tab

ib

�
=2;

rx
i � txb

ib =2;

ux
i � ÿtxb

ib =2;

ra
x � taa

xa=2;

ua
x � taa

xa=2:

�3�

We then de®ne the new diagnostic in terms of the
matrix 2-norms [13] of the unitary group generator
coe�cients

D1�ROCCSD� � max kra
i k2; kra

xk2; krx
i k2

ÿ �
; �4�

thus including only orbital rotations that preserve
spin symmetry. The 2-norm of a matrix R is de-
®ned as the maximum Euclidean norm of the
vectors formed by multiplication of R with a unit
vector x. The matrix 2-norm is easily computed
from

kRk2 �
���������
kmax

p
� rmax; �5�

where kmax is the largest eigenvalue of the matrix
RRT and rmax is the largest singular value of R.
For the special case with no open-shell orbitals,
D1�ROCCSD� is equivalent to the previously
proposed diagnostic, D1�CCSD� [11].

A restricted open-shell diagnostic could also be
de®ned to be the 2-norm of the matrix corre-
sponding to the spin-restricted single substitution
amplitudes

tr � ra
i ra

x
rx

i 0

� �
; �6�

where the columns correspond to orbitals with
nonzero occupancy and the rows to orbitals with
less than double occupancy in the reference. A
diagnostic computed in this way is always larger
than or equal to D1�ROCCSD�. This can be
proven Ref. [13], using Corollary 8.6.3. Comput-
ing the 2-norm of this matrix is equivalent to
®nding the largest individual element obtainable
by distinct unitary transforms of the row and
column bases. However, that allows too much
¯exibility, since the open-shell, doubly occupied,
and virtual orbital blocks would have complete
freedom to mix. Thus, the diagnostic would not
correspond to the maximum single substitution
amplitude of any possible rotated set of orbitals
that preserve the energy.

In previous work, we were able to relate the
closed-shell diagnostic, D1�CCSD�, to the T1 di-
agnostic with the relation

���
2
p

T16D1�CCSD�, but
no similar relationship holds for D1�ROCCSD�
and the open-shell T1. The open-shell T1 is most
commonly de®ned to be T1 � ktT1

kF=
���������
ncorr

p
[14],

where

2 It should be noted that the quality of the single-determinant

reference wavefunction is dependent upon both orbital relax-

ation and multireference e�ects, which themselves are inher-

ently coupled. The D1 diagnostic developed here is intended to

serve as a measure primarily of the former, though some

estimate of the latter is naturally expected as well.
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tT1
� ra

i

���
2
p

ra
x���

2
p

rx
i 0

� �
: �7�

We note that the blocks containing open-shell
orbitals in tr and tT1

di�er by a factor of
���
2
p

. This
factor originates from the fact that T1 was for-
mulated from a coupled-cluster approach using a
symmetric spin-orbital basis [14]. Coupled-cluster
theory does not specify any particular scaling fac-
tors for the three blocks of tT1

; however, we view
our diagnostic as a measure of spatial orbital re-
laxation, and it is therefore natural to use the co-
e�cients of the unitary group generators to develop
the diagnostic. In both standard spin-orbital and
symmetrized open-shell formulations of CCSD, the
coe�cients of the unitary group generators are
given by tr. This choice seems reasonable when
comparing the diagnostics for the 3B1 and 1A1

states of CH2. Intuitively, orbital relaxation in the
1A1 state should be more signi®cant because of its
inherent coupling to the important pair excitation
from the high-lying doubly occupied a1 to the low-
lying unoccupied b1 orbital. We computed the
diagnostics for these states of CH2 using the frozen
core approximation, the cc-pVTZ basis set, and
the experimental geometries. We found that T1 �
0:0107 and 0.0091 for the triplet and singlet, re-
spectively, whereas the D1�ROCCSD� diagnostic
takes on the values 0.0127 and 0.0194. If the factors
of

���
2
p

had been included in our de®nition of
D1�ROCCSD�, then our value for the 3B1 state
would have been 0.0179, which is rather close to the
value of 0.0194 for the 1A1 state.

3. Applications

The standard cc-pVTZ correlation consistent
basis sets of Dunning et al. [15,16] containing pure
spherical harmonic manifolds were employed
throughout the present study. In order to gauge
the reliability of the new diagnostic, ROHF-CCSD
and ROHF-CCSD(T) optimum geometries and
harmonic vibrational frequencies were computed
using the ACESIIACESII [17] package with all electrons
correlated. The geometries were considered to
have converged when the residual internal coor-
dinate gradients were less than 10ÿ6 a.u. All har-

monic vibrational frequencies were calculated via
®nite di�erences of analytic gradients. The re-
ported D1�ROCCSD� and T1 [18,19] diagnostics
were computed from the ROHF-CCSD singles
amplitudes obtained from the PSI3PSI3 program
package [20] at the corresponding optimized
geometry. All electrons were included in the
computations of D1�ROCCSD�, whereas the T1

diagnostics were computed using only the number
of valence electrons as previously recommended
[18,19]. As found in our earlier closed-shell studies
[11,12], the D1 diagnostics are only negligibly af-
fected by whether the core electrons are frozen or
explicitly correlated.

A 34 molecule test set was employed to cali-
brate the proposed diagnostic against the errors in
the CCSD optimized geometries and harmonic
vibrational frequencies. The molecular test set and
diagnostics are shown in Table 1 along with the
ROHF-CCSD, ROHF-CCSD(T), and experi-
mental geometries and frequencies. For our test
set, the ROHF-CCSD(T) method, in general, ac-
curately reproduces the available experimental
data, and therefore its results are taken as the
standard to which the ROHF-CCSD method is
calibrated. This also allows a better assessment of
the correlation procedure since the errors due to
basis set de®ciency and neglect of core correlation
are expected to be similar for the two methods.

The percent relative error of the ROHF-CCSD
bond lengths is plotted in Fig. 1 as a function of
the D1�ROCCSD� diagnostic values. A similar
plot for harmonic vibrational frequencies is shown
in Fig. 2. The magnitude of the errors is clearly
correlated with the size of the diagnostic. For
molecules with small diagnostics, D1�ROCCSD�
6 0:025, the errors in predicted bond lengths and
frequencies are all less than 0.5% and 2.0%, re-
spectively. Values of D1�ROCCSD� > 0:025 signal
the inadequacy of CCSD theory. The only excep-
tion to this bound is X 3R�g O2 (labeled A in Figs. 1
and 2) which has a diagnostic value of 0.0125 but
bond length and frequency errors of 1.2% and
5.6%, respectively. This can be attributed to sev-
eral large doubles amplitudes in the CCSD wave-
function that are not accounted for in the present
diagnostic. The substantial errors for X 2Pg O�2
(labeled B in Figs. 1 and 2) are also due in part to
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large doubles amplitudes, although for this case
the D1�ROCCSD� diagnostic is above the recom-
mended 0.025 cut-o�. A doubles diagnostic [12]
complementary to D1�ROCCSD� is clearly neces-
sary for these cases and will be considered in future
work.

Table 2 displays the experimental, CCSD, and
CCSD(T) singlet±triplet (ST) splittings for BN,
CN�, C2, O2, and CH2, as well as the CCSD errors
relative to experiment. For the ST splittings we do
not consider the CCSD errors relative to the

CCSD(T) values because the CCSD(T) values in
some cases di�er signi®cantly from the experi-
mental values. Overall, the D1 diagnostics correlate
well with the CCSD error in ST splittings. For O2,
both the CCSD and CCSD(T) ST splittings di�er
from the experimental value by more than 2500
cmÿ1, indicating that the coupled-cluster methods
are having di�culties describing this molecular
system. These di�culties are mainly due to the
inherent two-reference character of 1Dg O2. Even

Table 2

Coupled-cluster diagnostics and CCSD, CCSD(T), and experimental singlet±triplet splittings (cmÿ1)

Molecule D1�ROCCSD�a D1�CCSD�b T1
a T1

b CCSDc CCSD(T)c Expt.c CCSD error(%)d

BN 0.0597 0.2097 0.0353 0.0764 ÿ4338 328 190e 2383

CN� 0.1002 0.1892 0.0533 0.0698 ÿ3626 1814 880e 512

C2 0.0319 0.0861 0.0198 0.0387 ÿ2652 839 716 470

O2 0.0125 0.0401 0.0064 0.0139 11270 10 499 7918 42

CH2 0.0130 0.0188 0.0109 0.0090 4133 3816 3278 26

a High-spin open-shell triplet diagnostics.
b Closed-shell singlet diagnostics.
c Computed relative to experimental ground states.
d Error relative to experiment.
e Complete basis set limit CMRCI results from Ref. [23].

Fig. 2. cc-pVTZ CCSD errors in harmonic vibrational fre-

quencies relative to cc-pVTZ CCSD(T) values plotted against

the D1 diagnostics; errors are expressed as percentages of the

CCSD(T) values, and only the largest error is shown for each

molecule. Molecules containing second-row atoms are plotted

with squares, other molecules with triangles; all singlet states

are plotted with circles.

Fig. 1. cc-pVTZ CCSD bond errors relative to cc-pVTZ

CCSD(T) values plotted against the D1 diagnostics; errors are

expressed as percentages of the CCSD(T) values, and only the

largest error is shown for each molecule. Molecules containing

second-row atoms are plotted with squares, other molecules

with triangles; all singlet states are plotted with circles.
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the highly correlated single-reference CCSDT
method yields a ST splitting of 9524 cmÿ1, some
1606 cmÿ1 above the experimental value. It is
worth noting that the D1�CCSD� diagnostic re-
veals that the CCSD results for O2 are suspect,
while the T1 diagnostic is below the recommended
cut-o� of 0.020 [18,19].

4. Concluding remarks

An improved diagnostic for open-shell coupled-
cluster theory has been proposed which is com-
puted from the singles substitution amplitudes
obtained from a CCSD procedure. The new diag-
nostic, labeled D1�ROCCSD�, is analogous to the
single-substitution-based D1�CCSD� for closed-
shell systems. The D1 diagnostics are independent
of system size, have the same invariance properties
as the energy with respect to orbital rotations, and
are easily computed. The magnitude of the
D1�ROCCSD� diagnostic has been shown to cor-
relate with the performance of the CCSD method
for the prediction of structures and harmonic vib-
rational frequencies for 34 molecules. Our results
indicate that for values of D1�ROCCSD�6 0:025,
the quality of the CCSD results are, in general,
excellent, whereas values of D1�ROCCSD� > 0:025
signal an inadequacy in the CCSD approach. The
D1 diagnostics have also been found to correlate
well with errors in the CCSD ST splittings. In
conclusion, the D1�ROCCSD� diagnostic is a use-
ful indicator for the quality of properties predicted
by ROHF-CCSD theory.
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